
Studying Large Language Model
Generalization with Influence Functions

Roger Grosse, Juhan Bae*, Cem Anil**, and others at Anthropic

*jbae@cs.toronto.edu
**anilcem@cs.toronto.edu

Motivation
▸ How can we explain surprising LLM behaviors?

Motivation
▸ How can we explain surprising LLM behaviors?

Motivation
▸ How can we explain surprising LLM behaviors?

Motivation
▸ How can we explain surprising LLM behaviors?

▸ Inspect samples?
○ Stochasticity makes it difficult to notice small differences between models.
○ Observations are typically consistent with many different hypotheses for how a

sample is generated (e.g., deceptive alignment).

Motivation
▸ How can we explain surprising LLM behaviors?

▸ Inspect samples?
○ Stochasticity makes it difficult to notice small differences between models.
○ Observations are typically consistent with many different hypotheses for how a

sample is generated (e.g., deceptive alignment).

▸ Mechanistic interpretability (e.g., Elhage et al., 2021)?
○ Bottom-up approach
○ Very ambitious; requires a complete explanation of a computation, which may or

may not be possible.

Motivation
▸ How can we explain surprising LLM behaviors?

▸ Inspect samples?
○ Stochasticity makes it difficult to notice small differences between models.
○ Observations are typically consistent with many different hypotheses for how a

sample is generated (e.g., deceptive alignment).

▸ Mechanistic interpretability (e.g., Elhage et al., 2021)?
○ Bottom-up approach
○ Very ambitious; requires a complete explanation of a computation, which may or

may not be possible.

▸ Our approach: inspect the model’s patterns of generalization using influence functions
○ Top-down approach
○ How does the presence of a training example affect the model’s behavior?
○ Then dig deeper: which tokens and layers does this influence pass through?

Teaser

Most Influential
Training Sequence

※ Top influential sequences share a common theme of a desire to continue staying/living/operating before
potential farewell/death/termination.

Teaser

Teaser

※ Top influential sequences contain satirical texts on UK & US politics, fake news articles, and parodies of
public figures or cartoon characters.

Motivation
▸ Why is explaining phenomena like this important for AI safety?

○ If an LLM-based model “goes rogue”, it will probably be because of
unintended consequences of its training data and objectives.

▸ Influence functions give us one piece of the puzzle: which data points contribute
to LLM behaviours?
○ Additionally, by localizing the influence to layers and tokens, they can help

guide mechanistic interpretability efforts.

Influence Functions
▸ Influence functions are a classical idea from statistics (Hampel, 1974), which was

introduced to deep learning by Koh and Liang (2017).

▸ Assume we have a training dataset . E.g., for supervised learning, .
We fit the parameters using empirical risk minimization:

▸ We want to understand the effect of adding a new training example . We can
parameterize the training set by ’s weight , and see how the optimal solution varies
(i.e., the response function):

Influence Functions

▸ The influence of on is the first-order
Taylor approximation to the response
function.

▸ Under some regularity conditions, this can be
computed using the Implicit Function
Theorem:

▸ Hence, the change in the parameters can be
linearly approximated as:

Influence Functions
▸ Applying the Chain Rule for Derivatives, we can compute the influence on the loss

of test data point by perturbing a training data point .

▸ Therefore, the change in the test loss due to the change in data point weighting
can be approximated as:

▸ Given , positively influential training data points refers to data points
decrease the loss on , when upweighted (or increase the loss, when
downweighted).

Influence Functions: Conceptual Challenges
▸ The classical formulation of influence functions just described does not quite apply

to modern neural networks.
○ Assumes H is invertible, while neural network training is often underspecified.
○ Assumes that we have found the optimal solution .

▸ Influence functions have been shown to be a poor empirical match to the effects of
retraining the network on a modified dataset (e.g., Basu et al., “Influence functions
for deep learning are fragile”).

▸ Bae et al. (2022) reinterpreted influence functions as approximating another
quantity called the Proximal Bregman Response Function (PBRF).
○ This is unsatisfying in terms of what influence functions actually tell us.
○ But it gives a clear signal for evaluating influence function approximations.

Influence Functions: Scalability Challenges
▸ Influence functions are formulated in terms of an inverse-Hessian-vector product

(IHVP):

▸ The dimension of H is the number of parameters of the model, so we cannot compute it
explicitly for large models.

▸ Current approaches are typically based on expensive iterative linear solvers such as
LiSSA.

▸ Largest use cases of influence functions so far were for models in the hundreds of
millions of parameters.

▸ We could limit ourselves to analyzing smaller language models, but these do not show
the safety-relevant behaviors.

Influence Functions: Scalability Challenges
▸ Kronecker-Factored Approximate Curvature (K-FAC) (Martens and Grosse, 2015) is

a parametric approximation to neural network Hessians originally developed for
optimization but later extended to many other tasks.
○ Pay an upfront cost to estimate H from activation and gradient statistics. Then

approximating the inverse Hessian is cheap.

▸ Eigenvalue-Corrected K-FAC (EK-FAC) (George et al., 2018) is an extension that is
more robust to independence assumptions that fail beyond the MLP setting.

▸ Using EK-FAC, we can efficiency compute iHVPs for influence functions on models
up the 52 billion parameters.

How Accurate is EK-FAC?
Spearman correlations with the Proximal Bregman Response Function (PBRF), a form of
ground truth (expensive to compute).

How Accurate is EK-FAC?
Spearman correlations with the Proximal Bregman Response Function (PBRF), a form of
ground truth (expensive to compute).

Influence Functions for LLMs
▸ We are interested in which training sequences significantly influence , for a

prompt p and completion c. Often, we use the Human/Assistant dialogue format:

only this counts!

Influence Functions for LLMs
▸ We want to compute influence on (consisted of prompt p and completion c)!

▸ Influence formula:
○ Intuition: What training sequence increases the log-likelihood of a

query ?

▸ First, compute .
○ Ordinarily, this step requires an iterative computation (e.g., LiSSA). With EK-FAC, it

is cheap — similar to a gradient computation.

▸ Then, compute for all training sequences .
○ We need to compute gradients of all the candidate training sequences.
○ This is still expensive!

Scalability: Data Filtering (TF-IDF)
▸ First attempt: Use TF-IDF to select a set of 10,000 candidate training sequences,

and compute gradients only on those.

▸ Main issue: Misses sequences that are related only at an abstract level (which are
the most interesting cases!)

▸ In the end, we used TF-IDF filtering only to determine how many sequences to
search.
○ Idea: The top influential sequences from the unfiltered training data should

be at least as influential as the top sequences from the TF-IDF filtered data.

Influence Distribution

Need to search ~10 million sequences to match influences from 10k TF-IDF-filtered
sequences.

Scalability: Query Batching
▸ Recall: For each query, we need to compute once and compute

 for all candidate training sequences.

▸ How can we avoid computing 10 million training gradients for every query (~100)?

▸ Recall that the training gradients do not depend on the query. Given infinite memory,
we could compute them once and reuse them.

(Preconditioned) query
gradient matrices are large …

…but they’re approximately
low-rank…

…so we can store lots of
low-rank approximations!

shaped as
a matrix

Scalability: Query Batching
▸ Empirically, rank-32 approximations result in almost no loss in accuracy:

▸ We run influence queries in batches of 50 or so.

Influential Sequences: Math
The generalization patterns consistently become more sophisticated and abstract with model
size.

Influential Sequences: Math

Influential Sequences: Math

Influential Sequences: Role-Playing

Influential Sequences: Role-Playing

Influential Sequences: Code

Cross-Lingual Generalization

Cross-Lingual Generalization

Localizing to Layers and Tokens
▸ The influence can be attributed to individual tokens and layers.

▸ Tokenwise influence is subtle: we are measuring the influence caused by the gradient
term associated with that token.
○ If one token lights up, this might still reflect influence of previous tokens in the

sequence. The model could have copied information from past tokens into the
current one’s activations.

○ Similarly, it could reflect the contributions of future tokens, if changing this token’s
activations causes changes in future tokens.

Localizing to Layers and Tokens
Layerwise influence distributions for various queries:

Word Ordering
▸ So far, we have mostly shown scans over the training set (over 10 million

sequences), which are very expensive.

▸ Once we notice something, we can also study the generalization patterns
experimentally using synthetic “training” sequences.

▸ Here’s an example involving a surprising sensitivity to word ordering.

Word Ordering: Observation

Word Ordering: Experimental Manipulation

Influence on synthetic “training” sequences:

Word Ordering: Experimental Manipulation

Influence on synthetic “training” sequences:

Word Ordering: Translation

Word Ordering: Evidence
▸ In our work, we simply reported these influence patterns.

▸ Later, Berglund et al. found more extensive evidence for this phenomenon, which they
dub the Reversal Curse.

Berglund et al., 2023. The reversal curse: LLMs trained on “A is B” fail to learn “B is A”

What’s Next?

▸ Influence functions are one of the few tools we have for analyzing high-level
cognitive phenomena in LLMs

▸ Do descriptions of AI in the training set form a core part of the AI Assistant’s
self-concept?

▸ Using influence functions to localize representations (e.g., of truth/falsehood)

▸ Understanding the interactions between pre-training and fine-tuning:
○ Generalization patterns of fine-tuning are dominated by the optimizer’s

implicit bias, which comes from associations learned during pre-training.

